Abstract

ABSTRACTThe static behavior of composites and sandwich plates in thermo-mechanical environment is investigated by a two dimensional (2D) FE model. An efficient higher-order zig-zag theory (HOZT) considering actual through-thickness temperature profile and a least square error (LSE) method to accurately predict the inter-laminar stresses is implemented in this model. The in-plane displacement field is obtained by superposing a cubically varying global displacement field on a zig-zag displacement field having different slopes at each layer. This plate theory represents parabolic through thickness variation of transverse shear stresses, which satisfy the inter-laminar continuity at the layer interfaces and zero transverse shear stress conditions at the top and bottom of the plate. In the present 2D finite element (FE) model, the first derivatives of transverse displacement have been treated as independent variables to circumvent the problem of C1 continuity associated with the above plate theory (HOZT). The accurate through-thickness distribution of temperature is obtained by using a linear zig-zag thermal lamination theory proposed by the authors by using the thermal conduction properties of different constituent layers in the thickness direction. The LSE method is applied at the postprocessing stage to accurately calculate the inter-laminar stresses by the 3D equilibrium equations of the plate problem, after in-plane stresses are calculated. The proposed combined FE model (HOZT+LSE) is implemented to analyze the static behavior of laminated composites and sandwich plates subjected to thermo-mechanical loadings. Many new results are also presented that should be useful for the future reference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.