Abstract

β-carotene, a precursor to vitamin A, holds significant promise for health and nutrition applications. This study introduces an optimized approach for β-carotene production in Saccharomyces cerevisiae, leveraging metabolic engineering and a novel use of agricultural waste. The GAL80 gene deletion facilitated efficient β-carotene synthesis from sucrose, avoiding the costly galactose induction, and achieved titers up to 727.8 ± 68.0 mg/L with content levels of 71.8 ± 0.4 mg/g dry cell weight (DCW). Furthermore, the application of agricultural by-products, specifically molasses and fish meal as carbon and nitrogen sources, was investigated. This approach yielded a substantial β-carotene titer of 354.9 ± 8.2 mg/L and a content of 60.5 ± 4.3 mg/g DCW, showcasing the potential of these sustainable substrates for industrial-scale production. This study sets a new benchmark for cost-effective, green manufacturing of vital nutrients, demonstrating a scalable, eco-friendly alternative for β-carotene production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call