Abstract

In this paper, a nonlinear controller capable of high dynamic torque regulation and efficiency optimization of the synchronous reluctance motor (SynRM) using input-output feedback linearization is proposed. The cross-coupling effects in the SynRM model and the torque nonlinearity due to the iron losses in torque-speed characteristics of the SynRM are discussed. The criterion for the efficiency optimization is also introduced and investigated. Since the proposed nonlinear controller directly regulates the torque by selecting the product of d- and q-axes torque currents as one of the output variables, the nonlinear and cross-coupling aspects between the d-and q-axes torque currents and the terminal currents can he eliminated. Hence, the linear torque-speed characteristic can be achieved. In addition, by controlling the power loss-minimizing criterion directly, the proposed controller can optimize the efficiency of the SynRM without deteriorating the dynamics performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call