Abstract

Plastic food containers used for high-temperature applications are not completely inert, and potentially harmful chemicals may be transferred to foodstuffs when such containers are heated. The aim of this work was to investigate the role of food fat content on the efficiency of trapping volatile organic compounds from heated plastic packaging. Relatively simple food matrices such as powdered skimmed and whole milk were evaluated with respect to their retention of several selected migrants: toluene, 1-octene, ethylbenzene, o-, m-, and p-xylene, styrene, and 1,4-dichlorobenzene released from containers made of polypropylene (random and copolymer), polycarbonate, and styrene-acrylonitrile copolymer, which are all commonly used in high-temperature applications. The analytical method (purge and trap gas chromatography and mass spectrometry) was optimized for each matrix. The developed procedure had detection limits of 0.01 to 1.2 ng, depending on the analyte and sample matrix, and both reproducibility and repeatability (expressed as relative standard deviation) were below 15%. This method was applied to the different plastic materials. The concentrations of the volatile compounds in both matrices were well below the established specific migration limits. Temperature and fat content of powdered milk were the most influential variables in mass transfer processes. These values were compared with those obtained with either Tenax TA (alternative test medium for fatty food simulants) or Porapak Q (another widely used sorbent). Similar results were found in skimmed powdered milk and Tenax TA, but significant differences were observed for whole powdered milk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call