Abstract
We recently reported better wheat-protein utilization and a higher apparent lysine requirement than would be predicted, because of adaptive mechanisms of lysine conservation. However, such findings may be subject to the feeding protocol of frequent small meals. We used a [1-13C]leucine balance, large single-meal protocol to estimate the utilization of wheat and the consequent lysine requirements. Wheat and milk utilization were compared in 5 adults infused for 9 h with L-[1-13C]leucine, in the postabsorptive (0-3 h) and postprandial (3-9 h) states after ingestion of a single meal of either milk (30.4 kJ/kg; 32% of energy as protein) or a mixture of wheat gluten and whole wheat (29.2 kJ; 26.7% of energy as protein). Premeal nitrogen balance was predicted from [1-13C]leucine oxidation and postmeal balance predicted from cumulative increased leucine oxidation, enabling evaluation of the metabolic demand for protein, the efficiency of postprandial protein utilization (PPU), and the requirements for wheat protein and lysine. Mean (+/-SD) PPU was 0.61 +/- 0.03 and 0.93 +/- 0.02 for wheat and milk (P < or = 0.001), respectively, and the estimated average wheat-protein requirement (0.6 g.kg(-1).d(-1)/PPU) was 0.98 +/- 0.05 g.kg(-1).d(-1), indicating a lysine requirement of 18.3 +/- 1.0 mg. kg(-1).d(-1). Measured wheat utilization efficiency at 0.61 was considerably higher than the value predicted from wheat lysine intake and milk protein lysine deposition (ie, 0.222 +/- 0.004). These results confirm our previous finding that lysine conservation allows wheat protein to be utilized more efficiently than expected and is consistent with a lysine requirement in fully adapted individuals of 19 mg.kg(-1).d(-1), as indicated by recalculated nitrogen balance data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.