Abstract

The effects of feeding different levels of forages and concentrate, in a discontinuous feeding pattern, on the efficiency of feed utilisation and rumen function were studied using rumen fistulated sheep. Experiment 1 was a 4 × 4 latin square design to determine the whole tract digestibility and rumen characteristics of diets comprising 15% (C15), 25% (C25), 35% (C35) and 45% (C45) concentrate (energy-dense dairy pellets) with the rest of the diet being a combination of fresh short rotation ryegrass ( Lolium mutiforum) and conserved (lucerne hay and maize silage) forages. In Experiment 2, the rumen degradation characteristics of feed ingredients were determined using the nylon bag technique. Daily dry matter intake (either expressed as g/kg LW or g/kg W 0.75) was 10% lower ( p = 0.03) for the C15 diet compared with C25, C35 and C45 diets. The apparent in vivo digestibility of dry matter (DM) for C15 diet was 4% higher ( p = 0.04) than the C35 and C45 diets which may be attributed to the high quality of the forage (ryegrass) used. Fibre digestibility decreased as proportion of concentrate in the diet increased. However, this was unlikely due to changes in the rumen fermentation pattern, as neither pH (6.1 ± 0.23) nor ammonia concentration (24.4 ± 6 mg/dl), were different ( p > 0.05) among diets. Instead, the lower fibre digestion was most likely the result of different type and proportion of fibre among diets, as total rumen degradability and rate of fibre degradation in the rumen were higher ( p = 0.001) for ryegrass than for other feedstuffs. There was no significant difference in total nitrogen balance and urinary allantoin excretion among diets, which indicated similar total microbial protein synthesis (MPS). The asynchrony observed, for N and energy availability in the rumen for different diets using Sinclair et al. [Sinclair, L.A., Garnsworthy, P.C., Newbold, J.R., Buttery, P.J., 1993. Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in sheep. J. Agric. Sci. 120, 251–263] equation, was due to the feeding pattern used in this study leading to excess of N in relation to total organic matter digested in the rumen. In conclusion, feeding concentrates in the diets as PMR with conserved forages in a discontinuous feeding pattern may be valuable to develop feeding strategies in a pasture based system for high producing dairy cows without affecting the rumen system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call