Abstract

The electrophysical approach is used to estimate conditions for effective pumping of the active medium of lasers on self-terminating metal atom transitions in gas-discharge tubes (GDT) with electrodes located in the hot zone of the discharge channel. It is demonstrated that in the laser discharge contour there are processes limiting the frequency and energy characteristics (FEC) of radiation. The mechanism of influence of these processes on the FEC of radiation, and technical methods of their neutralization are considered. It is demonstrated that the practical efficiency of a copper vapor laser can reach ~10% under conditions of neutralization of these processes. Conditions for forming the distributed GDT impedance when the active medium is pumped on the front of the fast ionization wave are determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.