Abstract
The adverse effects and toxicity of chemical substances pose substantial challenges in drug discovery and environmental science. Their management, most especially in the early development stage, is crucial in preventing costly failures in clinical trials. Predictive methodologies, such as computational toxicology, offer an effective means of managing risks, particularly for new compounds with insufficient post-marketing surveillance and those lacking information on adverse effects. Computational approaches have become increasingly important in environmental science, in which the sheer number and diversity of chemicals present similar challenges to toxicity control. Traditional animal-based evaluation methods are resource intensive, time consuming, and ethically problematic, making them unsuitable for use in assessing the vast compound range. It is an urgent task for the academic community to minimize the risks associated with drug discovery and environmental exposure. This study focuses on systems used to predict toxicity from chemical structure information and outlines the prediction accuracy and systems developed in Japan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.