Abstract
Rapid population growth and widespread industrialization are the main contributing factors to the increasing contamination of the world’s diminishing freshwater resources. This work investigates Fe/TiO2 as an efficient and sustainable photocatalyst for treating organic micropollutants in water. The photocatalysts prepared by these mechanochemical methods used a high-energy ball milling technique to manipulate Fe/TiO2’s structural, optical, and catalytic properties for the photo-oxidation of 2,4-Dichlorophenol (2,4-DCP). Doping with iron effectively reduced the band gap of rutile TiO2 from 3 to 2.22 eV. By reducing the ball/powder ratio from 34 to 7, the removal efficiency of 2,4-DCP increased from 65.2 to 84.7%. Measuring the TOC indicated 63.5 and 49.4% mineralization by Fe/TiO2-7 and rutile TiO2, respectively, after 24 h. The energy yields for the Fe/TiO2 and rutile TiO2 were 0.13 and 0.06 g 2,4-DCP/kW h, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.