Abstract
In this study, we use the photosynthetic purple bacterium Rhodobacter sphaeroides to find out how the acclimation of photosynthetic apparatus to growth conditions influences the rates of energy migration toward the reaction center traps and the efficiency of charge separation at the reaction centers. To answer these questions we measured the spectral and picosecond kinetic fluorescence responses as a function of excitation intensity in membranes prepared from cells grown under different illumination conditions. A kinetic model analysis yielded the microscopic rate constants that characterize the energy transfer and trapping inside the photosynthetic unit as well as the dependence of exciton trapping efficiency on the ratio of the peripheral LH2 and core LH1 antenna complexes, and on the wavelength of the excitation light. A high quantum efficiency of trapping over 80% was observed in most cases, which decreased toward shorter excitation wavelengths within the near infrared absorption band. At a fixed excitation wavelength the efficiency declines with the LH2/LH1 ratio. From the perspective of the ecological habitat of the bacteria the higher population of peripheral antenna facilitates growth under dim light even though the energy trapping is slower in low light adapted membranes. The similar values for the trapping efficiencies in all samples imply a robust photosynthetic apparatus that functions effectively at a variety of light intensities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Bioenergetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.