Abstract

In this paper, we report the novel finding that the cellular delivery efficiency of siRNAs or their mimic double-stranded (ds)DNA using layered double hydroxide (LDH) nanoparticles is dependent upon the nucleotide sequence. Efficacy of LDH-mediated delivery of four different siRNAs into cortical neurons and NIH 3T3 cells was found to vary widely (from 6 to 80%, and 2–11%, respectively). Our investigation into the formation of dsDNA–LDH complexes through monitoring the dsDNA:LDH mass ratio at the point of zero charge (PZC) indicated that the degree of intercalation of the individual dsDNA sequences into the LDH nanoparticles varied significantly. The dsDNA:LDH mass ratio at the PZC was found to be dependent on the nucleotide sequence. We further observed that PZC for each sequence was positively related to the extent of LDH-mediated internalization of the equivalent siRNA into neurons and fibroblasts. This novel finding therefore suggests that the mass ratio at the PZC is a useful predictive tool with which to assess the intercalation efficiency of selected siRNA sequences into the LDH interlayer and subsequent internalization into the cell cytoplasm. This finding will allow a more controlled approach to the design of suitable siRNA sequences for LDH-mediated siRNA delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.