Abstract

This work aims at bridging the efficiency of ball milling of granulated blast furnace slag (GBFS) to the structural and mechanical properties of slag cement pastes. Both conventional and high energy milling of GBFS are considered with a milling duration varied between 1 and 10h. X-ray diffraction, infra-red spectroscopy, granulometry analysis and scanning electron microscopy are used to draw the main lines of structural and morphological changes occurring during milling. Cement pastes formulated using 45% of GBFS in substitution are characterized. Workability, X-ray diffraction analysis, differential scanning calorimetry and compressive testing are performed to analyse main structural changes and reactions driven by the presence of milled GBFS as well as its direct consequence on the mechanical strength of slag cement pastes. Slag milling indicates the superior efficiency of high-energy milling, which allows a maximum slag finesse of 1.79m2/g after 3h of milling. Major structural changes occur during the first 3h of high energy milling while conventional milling does not induce any remarkable trend. These changes concern amorphisation of the bulk structure in addition to the fracturing and agglomeration of slag particles. Workability of slag cement pastes is remarkably improved when using 1h of high-energy slag milling. This result is consistent with slag finesse trend with respect to milling time and with the improvement of GBFS reactivity. The substitution of 45% of cement (CEM I 52.5) by GBFS is only beneficial at the condition of performing high-energy milling for at least 1h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.