Abstract
FLOWERING LOCUS T (FT) promotes flowering by integrating six genetic pathways. In Arabidopsis, the FT protein is transported from leaves to shoot apices and induces flowering. However, contradictory conclusions about floral induction via graft-transmitted FT in trees were reported in previous studies. We obtained extremely early-flowering transgenic woody Jatropha curcas L. by overexpression of J. curcas FT using Arabidopsis thaliana SUCROSE TRANSPORTER 2 (SUC2) promoter (SUC2:JcFT) and non-flowering transgenic J. curcas by RNA interference (RNAi), which were used to investigate the function of graft-transmitted JcFT in floral induction in woody perennials. Scions from five wild-type species of the Jatropha genus and from JcFT-RNAi transgenic J. curcas were grafted onto SUC2:JcFT rootstocks. Most grafted plants produced flowers in 1–2 months, and the flowering percentage and frequency of various grafted plants decreased with increasing scion length. Consistently, FT protein abundance in scions also decreased with increasing distance from graft junctions to the buds. These findings suggest that FT proteins can be transmitted by grafting and can induce the floral transition in woody perennials, and the efficiency of graft-transmitted JcFT for floral induction depends on the scion length, which may help explain previous seemingly contradictory observations regarding floral induction via graft-transmitted FT in trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.