Abstract

BackgroundIn breeding programs for layers, selection of hens and cocks is based on recording phenotypic data from hens in different housing systems. Genomic information can provide additional information for selection and/or allow for a strong reduction in the generation interval. In this study, a typical conventional layer breeding program using a four-line cross was modeled and the expected genetic progress was derived deterministically with the software ZPLAN+. This non-genomic reference scenario was compared to two genomic breeding programs to determine the best strategy for implementing genomic information in layer breeding programs.ResultsIn scenario I, genomic information was used in addition to all other information available in the conventional breeding program, so the generation interval was the same as in the reference scenario, i.e. 14.5 months. Here, we assumed that either only young cocks or young cocks and hens were genotyped as selection candidates. In scenario II, we assumed that breeders of both sexes were used at the biologically earliest possible age, so that at the time of selection only performance data of the parent generation and genomic information of the selection candidates were available. In this case, the generation interval was reduced to eight months. In both scenarios, the number of genotyped male selection candidates was varied between 800 and 4800 males and two sizes of the calibration set (500 or 2000 animals) were considered. All genomic scenarios increased the expected genetic gain and the economic profit of the breeding program. In scenario II, the increase was much more pronounced and even in the most conservative implementation led to a 60% improvement in genetic gain and economic profit. This increase was in all cases associated with higher breeding costs.ConclusionsWhile genomic selection is shown to have the potential to improve genetic gain in layer breeding programs, its implementation remains a business decision of the breeding company; the possible extra profit for the breeding company depends on whether the customers of breeding stock are willing to pay more for improved genetic quality.

Highlights

  • In breeding programs for layers, selection of hens and cocks is based on recording phenotypic data from hens in different housing systems

  • We modeled two different genomic scenarios: Scenario I: in this scenario, the genomic information of cocks or both sexes was added to all other information that is available in the reference scenario but all selection decisions were made at the same time as in the reference scenario

  • The accuracy of the selection index at the time of selection was rTI = 0.51 for cocks, rTI = 0.53 for hens tested in single cages, and rTI = 0.51 for hens tested in group cages

Read more

Summary

Introduction

In breeding programs for layers, selection of hens and cocks is based on recording phenotypic data from hens in different housing systems. A typical conventional layer breeding program using a four-line cross was modeled and the expected genetic progress was derived deterministically with the software ZPLAN+. The marketable product of these companies is the breeding stock that subsequently is used to produce laying hens in various production systems. Cocks and hens are usually selected at one year of age or slightly older. Both cocks and hens could be used for reproduction much earlier since they achieve their sexual maturity at about five months of age

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call