Abstract
This article presents the results of an investigation into the free cooling efficiency in a heavyweight and lightweight low energy building using a mechanical ventilation system with two latent heat thermal energy storages (LHTESs), one for cooling the fresh supply air and the other for cooling the re-circulated indoor air. Both LHTESs contain sphere encapsulated PCM (paraffin RT20). Using a developed and experimentally verified numerical model of the LHTES, the temperature response functions, based on the heat storage size, the air flow rates and the PCM's thermal properties, are established in the form of a Fourier series and empirical equations and used in the TRNSYS building thermal response model. Several mechanical ventilation, night cooling and free cooling operation modes were analysed and compared. It was found that the free cooling technique enables a reduction in the size of the mechanical ventilation system, provides more favourable temperatures and therefore enables better thermal comfort conditions, and in our studied case also fresh air for the occupants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.