Abstract

Machine-induced vibrations represent, for several reasons, a crucial design issue for industrial buildings. At the early design stage, special attention is thus required for the static and dynamic performance assessment of the load-bearing members, given that they should optimally withstand ordinary design loads but also potentially severe machinery operations. The knowledge and reliable description of the input vibration source is a key step, similarly to a reliable description of the structural system, to verify. However, such a kind of detailing is often unavailable and results in a series of simplified calculation assumptions. In this paper, a case-study eyewear factory built in 2019 is investigated. Its layout takes the form of a two-story, two-span (2 × 14.6 m) precast concrete frame (poor customer/designer communication on the final equipment resulted in various non-isolated computer numerical control (CNC) vertical machines mounted on the inter-story floor, that started to suffer from pronounced resonance issues. Following past experience, this paper investigates the validity of a coupled experimental–numerical method that could be used for efficient assessment predictive studies. Based on on-site experiments with Micro Electro-Mechanical Systems (MEMS) accelerometers mounted on the floor and on the machine (spindle included), the most unfavorable machine-induced vibration sources and operational conditions are first characterized. The experimental outcomes are thus used to derive a synthetized signal that is integrated in efficient one-bay finite element (FE) numerical model of the floor, in which the machine–structure interaction can be taken into account. The predictability of marked resonance issues is thus emphasized, with a focus on potential and possible limits of FE methods characterized by an increasing level of detailing and computational cost.

Highlights

  • IntroductionThe vibration serviceability assessment of civil engineering facilities represents a challenging issue for the design of both new structures and existing systems to retrofit [1]

  • This paper investigates the potential of an improved coupled experimental–numerical approach for predictive vibration serviceability studies, by taking into account a case-study industrial building realized in Italy, to host an eyewear factory

  • Based the available experimental feedback

Read more

Summary

Introduction

The vibration serviceability assessment of civil engineering facilities represents a challenging issue for the design of both new structures and existing systems to retrofit [1]. Often, such a verification stage is not assessed with careful consideration. The lack of reliable design criteria or reference input data in support of designers make this step even more uncertain. In this regard, can notoriously offer strong support to designers. A multitude of combinations of loads can be efficiently assessed at the early design stage of buildings and infrastructural systems, so as to prevent potential unfavorable operational conditions

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.