Abstract

Previously, a set of optimistic studies have been published to show the efficiency of chemically recuperated gas turbines (CRGT) based on steam methane reforming. The thermodynamic efficiency of such turbines is depending not only on temperature and pressure in a cycle but also on temperature, pressure and steam-to-methane ratio in a recuperation system. In this paper, the effect of operational parameters (temperature, pressure, steam-to-methane ratio) on the efficiency of CRGT was determined. Exhaust heat recuperation in CRGT is taking place due to methane reforming, steam-methane mixture heating, and steam generation. A thermodynamic enthalpy of steam methane reforming process was determined via Gibbs free energy minimization method. The thermodynamic analysis of CRGT was performed in Aspen HYSYS. The efficiency of CRGT was determined for a wide range of operational parameters (gas turbine inlet temperature of 800–1500 °C, pressure of 5–25 bar, steam-to-methane ratio of 1...3). Based on the analysis it was confirmed that the efficiency of CRGT and thermochemical exhaust heat recuperation system is increasing with an increase in temperature. An increase in temperature and steam-to-methane ratio leads to an increase in a share of recuperated heat in a reformer. The heat recuperation rate is up to 0.63 for a high-temperature gas turbine and a steam-to-methane ratio of 3. The efficiency of CRGT is up to 49% for gas turbines with inlet gas temperature of 1500 °C which is an available level in modern gas turbines from Mitsubishi, Siemens, Alstom, etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.