Abstract

We present an investigation of the relaxation dynamics of deuterated water molecules after direct photo-double ionization at 61eV. We focus on the very rare D+ + O+ + D reaction channel in which the sequential fragmentation mechanisms were found to dominate the dynamics. Aided by theory, the state-selective formation and breakup of the transient OD+(a1Δ, b1Σ+) is traced, and the most likely dissociation path-OD+: a1Δ or b1Σ+ → A 3Π → X 3Σ- → B 3Σ--involving a combination of spin-orbit and non-adiabatic charge transfer transitions is determined. The multi-step transition probability of this complex transition sequence in the intermediate fragment ion is directly evaluated as a function of the energy of the transient OD+ above its lowest dissociation limit from the measured ratio of the D+ + O+ + D and competing D+ + D+ + O sequential fragmentation channels, which are measured simultaneously. Our coupled-channel time-dependent dynamics calculations reproduce the general trends of these multi-state relative transition rates toward the three-body fragmentation channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call