Abstract
We report that a novel exciton feedback effect is observed by introducing the bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum (BAlq) inserted between the emitting layer (EML) and the electron transporting layer in blue organic light emitting diodes. As an exciton feedback layer (EFL), the BAlq does not act as a traditional hole blocking effect. The design of this kind of device structure can greatly reduce excitons' quenching due to accumulated space charge at the exciton formation interface. Meanwhile, the non-radiative energy transfer from EFL to the EML can also be utilized to enhance the excitons' formation, which is confirmed by the test of photolumimescent transient lifetime decay and electroluminescence enhancement of these devices. Accordingly, the optimal device presents the improved performances with the maximum current efficiency of 4.2 cd/A and the luminance of 24600 cd/m2, which are about 1.45 times and 1.75 times higher than those of device A (control device) without the EFL, respectively. Simultaneously, the device shows an excellent color stability with a tiny offset of the CIE coordinates (Δx = ±0.003, Δy = ±0.004) and a relatively lower efficiency roll-off of 26.2% under the driving voltage varying from 3 V to 10 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chinese Physics Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.