Abstract
Sand media filters are especially recommended to prevent emitter clogging with loaded irrigation waters, but their performances rely on backwashing. Despite backwashing being a basic procedure needed to restore the initial filtration capacity, there is a lack of information about the solid removal efficiency along the media bed depth. An experimental filter with a 200 mm silica sand bed height was used to assess the effect of two operation velocities (30/45 and 60/75 (filtration/backwashing) m h−1) and two clogging particles (inorganic sand dust and organic from a reclaimed effluent) on the efficiency of backwashing for removing the total suspended solids retained in different media bed slices. The average solid removal backwashing efficiency was greater with organic particles (78%) than with inorganic ones (64%), reaching its maximum at a 5–15 mm bed depth. A higher operation velocity increased the solid removal efficiency by 16%, using organic particles, but no significant differences were observed with inorganic particles. The removal efficiencies across the media bed were more uniform with organic particles (63–89%) than with inorganic (40–85%), which makes it not advisable to reduce the media height when reclaimed effluents are used. This study may contribute to future improvements in sand media filter design and management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.