Abstract

Development of bidirectional non-monotonic segmented leaf sequence (NSLS) MLC delivery technique compatible with Varian MLC for non-split IMRT fields reducing total monitor units (TotalMU) and the number of segments (NS) simultaneously and assessment of its efficiency using a plan scoring index (PSI). The optimal fluence of IMRT plans of ten patients of lung carcinoma, calculated using Eclipse TPS version 11.0 (Varian Medical Systems, Palo Alto, CA, USA), was used to generate the segmented MLC fields using our newly developed equally spaced (ES) reducing level and NSLS algorithms in MATLAB® version 2011b for 6-10 intensity levels. These MLC fields were imported into the plans with the same field setup and the final dose was recalculated. The results were compared with those of commercially available multiple static segments (MSS) leaf motion calculation (LMC) algorithm and few previously published algorithms. Plan scoring index (PSI) and degree of modulation (DoM) was calculated to compare the quality of different plans for the same patient. The average differences in TotalMU and NS with respect to MSS algorithm are -3.80% and -14.28% for the NSLS algorithm, respectively. The calculated average PSI and DoM is 0.75, 2.51 and 0.91, 2.41 for the MSS and NSLS algorithms, respectively. IMRT plans generated using the NSLS algorithm resulted in the best PSI, DoM values among all the leaf sequencing algorithms. Our proposed NSLS algorithm allows bidirectional delivery in Varian medical linear accelerator which is not commercially available. NSLS algorithm is efficient in reducing the TotalMU and NS with equivalent plan quality as that of MSS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call