Abstract

The efficiency of three modified plastic digesters (3.6 m<sup>3</sup> each) using food waste for biogas generation in cooking food was evaluated. The experiment was laid out based on a completely randomised design. A plastic tank was modified as a biodegradation system for food waste digestion to generate a biogas. The biochemical and chemical oxygen demand ranged from 44.58 to 49.62% and 130.42 to 139.20%, respectively, before digestion, but decreased significantly (P < 0.05) after digestion. The pH of the fermenting slurry fluctuated (6.24–6.86) and an average biogas of 0.574 m<sup>3</sup> (505–601 L·day<sup>–1</sup>) per day was generated from the three experimental waste proportions which would be sufficient to cook three meals per day for 3 to 4 people. The methane gas significantly increased (P < 0.05) while the carbon-dioxide significantly decreased (P < 0.05) at the peak of the biogas production. The generated biogas significantly cooked (P < 0.05) faster than kerosene, but not faster than liquefied petroleum gas. The flammable biogas generation and high significant (P <0.05) percentage change in the physico-chemical properties of the wastes after digestion implied high efficiency performance of the digesters modified from the plastic tanks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call