Abstract

The rule/plan motor cognition (RPMC) paradigm elicits visually indistinguishable motor outputs, resulting from either plan- or rule-based action-selection, using a combination of essentially interchangeable stimuli. Previous implementations of the RPMC paradigm have used pantomimed movements to compare plan- vs. rule-based action-selection. In the present work we attempt to determine the generalizability of previous RPMC findings to real object interaction by use of a grasp-to-rotate task. In the plan task, participants had to use prospective planning to achieve a comfortable post-handle rotation hand posture. The rule task used implementation intentions (if-then rules) leading to the same comfortable end-state. In Experiment A, we compare RPMC performance of 16 healthy participants in pantomime and real object conditions of the experiment, within-subjects. Higher processing efficiency of rule- vs. plan-based action-selection was supported by diffusion model analysis. Results show a significant response-time increase in the pantomime condition compared to the real object condition and a greater response-time advantage of rule-based vs. plan-based actions in the pantomime compared to the real object condition. In Experiment B, 24 healthy participants performed the real object RPMC task in a task switching vs. a blocked condition. Results indicate that plan-based action-selection leads to longer response-times and less efficient information processing than rule-based action-selection in line with previous RPMC findings derived from the pantomime action-mode. Particularly in the task switching mode, responses were faster in the rule compared to the plan task suggesting a modulating influence of cognitive load. Overall, results suggest an advantage of rule-based action-selection over plan-based action-selection; whereby differential mechanisms appear to be involved depending on the action-mode. We propose that cognitive load is a factor that modulates the advantageous effect of implementation intentions in motor cognition on different levels as illustrated by the varying speed advantages and the variation in diffusion parameters per action-mode or condition, respectively.

Highlights

  • The development of human interaction with physical tools and objects has come a long way from grasping and using basic stone tools to modern-day video game controllers

  • In contrast to plan-based actions our rule-based actions were guided by implementation intentions, and as expected we found faster processing for this task compared to when prospective planning was involved

  • We found that efficiency effects are stronger in the pantomime mode vs. when using the real object

Read more

Summary

Introduction

The development of human interaction with physical tools and objects has come a long way from grasping and using basic stone tools to modern-day video game controllers. Considering the multitude of possibilities for grasping an object (variable macroscopic features of grasping include grip force, hand posture, hand shape, and placement on the object), why do we select the grasps that we do?. Healthy individuals pick up a given object with a grip that matches the properties of the object, such as size, weight, and surface texture (Cadoret and Smith, 1996; Flanagan and Wing, 1997; Hermsdörfer et al, 2008; Li et al, 2009). When picking up an iron bar, knowledge of iron’s weight characteristics leads to a tight initial grip, as iron is known to be relatively heavy. Grip force can be further mediated by the bar’s surface texture, which might be smooth or rough-textured. Smooth textures typically lead to a tighter grip to hinder the object from slipping

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call