Abstract
We examined the limitations imposed by neural factors on spatial contrast sensitivity for both isochromatic and isoluminant gratings. We used two strategies to isolate these neural factors. First, we eliminated the effect of blurring by the dioptrics of the eye by using interference fringes. Second, we corrected our data for additional sensitivity losses up to and including the site of photon absorption by applying an ideal-observer analysis described by Geisler [J. Opt. Soc. Am. A 1, 775 (1984)]. Our measurements indicate that the neural visual system modifies the shape of the contrast-sensitivity functions for both isochromatic and isoluminant stimuli at high spatial frequencies. If we assume that the high-spatial-frequency performance of the neural visual system is determined by a low-pass spatial filter followed by additive noise, then the visual system has a spatial bandwidth 1.8 times lower for isoluminant red-green than for isochromatic stimuli. On the other hand, we find no difference in bandwidth or sensitivity of the neural visual system for isoluminant red-green and S-cone-isolated stimuli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.