Abstract

The styrene oxide to styrene carbonate conversion performed in CO2 atmosphere, herein selected as a case study, was implemented in microdroplets (aerosol) reactions at the preparative scale (3.5 mmol of the starting material) and mild conditions (1 atm CO2 pressure), within a custom-made ultrasonic nebulization reactor. Upon optimization of the promoter stoichiometry (1 eq of 4.3 TEG/KI ratio) and methanol (MeOH) dilution (7.5 mL of 2.5 v/v MeOH/TEG), performances under mass transfer-limited conditions of this novel methodological paradigm have been compared at 25 °C and 50 °C with those implemented as: a) no-stirred, b) stirred, and c) sonicated bulk reactions. Complete selectivity and an apparent acceleration factor (AAF) of 1.9 was registered at both temperature for microdroplets reactions in respect with the sonicated counterparts, these latter performing better than the other bulk reactions. These significative efficiency improvements, candidate aerosol reactions as a preferred process intensification approach in the realm of effective CO2-utilization strategies and, in general, in the development and exploitation of gas-liquid two-phase reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call