Abstract

We consider the possibility of improving the superhigh-power laser pulse to superponderomotive electrons energy conversion efficiency by using porous targets of near-critical density. We report the results of numerical simulations based on the typical parameters of laser pulses of the PEARL laser facility built on the principles of parametric chirped pulse amplification (OPCPA). An original scheme for producing a controllable prepulse based on the use of a pump laser switched to a two-pulse regime is discussed. The prepulse is required to homogenise the submicron inhomogeneities of a porous target. Simulations show a significant increase in the laser-to-electron energy conversion efficiency in comparison with solid-state and gas targets. This interaction regime can be used to improve the efficiency of a broad class of laser-driven secondary radiation sources, such as a betatron source, bremsstrahlung, neutron source, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.