Abstract

The correct and complete geometrical definition of a product is nowadays a critical activity for most companies. To solve this problem, ISO has launched the GPS, Geometrical Product Specifications and Verification, with the goal of consistently and completely describe the geometric characteristics of the products. With this project, it is possible to define a language of communication between the various stages of the product lifecycle based on operators: these are an ordered set of mathematical operations used for the definition of the products. However, these theoretical and mathematical concepts require a level of detail and completeness of the information hardly used in usual industrial activities. Consequently in industrial practice the definition and verification of products appears to be a slow process, error-prone and difficult to control. Product Lifecycle Management (PLM) is the activity of managing the company's products throughout their lifecycle in the most efficient way. PLM describes the engineering aspects of the products, ensuring the integrity of product definition, the automatic update of the product information and then aiding the product to fulfil with international standards. Despite all these benefits, the concepts of PLM are not yet fully understood in industry and they are difficult to implement for SME's. A first objective of this research is to develop a model to depict and understand processes. This representation is used as a tool during the application of a case study of a whole set of a GPS standards for one type of tolerance. This procedure allows the introduction of the GPS principles and facilitates its implementation within a PLM process. Until now, PLM is presented on isolated aspects without the necessary holistic approach. Furthermore, industry needs people able to operate in PLM context, professional profiles that are not common on the market. There is therefore an educational problem; besides the technical knowledge, the new profile of engineers must be also familiar with the PLM philosophy and instruments to work effectively in a team. With the aim of solving this problem, this thesis presents a PLM solution that gives the guidelines for a correct understanding of these topics

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.