Abstract

This study aims to demonstrate the use of a novel treatment approach for fatigue crack healing. High-density pulsed electric currents, which have been widely used for fatigue crack healing of metals, can exert synergistic effects on fatigue crack healing by both compressive stress (owing to the Joule heating) and dislocation motion (owing to the electron wind force). However, these synergistic effects are sometimes weakened by temperature elevations owing to high current densities, failing to efficiently heal fatigue cracks owing to the thermal degradation of metals. In this study, type 316 austenitic stainless steel, which is the most common metallic material, was considered for investigating fatigue crack healing improvement under controlled crack tip temperature elevation owing to the Joule heating induced by multiple high-density pulsed electric currents. Appropriate current parameters such as current density and pulse number under fixed pulse duration were optimized. The results revealed microstructural modifications, such as crack closure with crack bridging, annihilation of slip bands, and material filling near the crack tips, which is promising for fatigue crack healing improvement. The results of fatigue crack growth tests validated these microstructure improvements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call