Abstract
The direct torque control (DTC) strategy is one of the most effective techniques, used to control the switched reluctance motor (SRM) with improved dynamic performance and reduced torque ripple. However, this approach draws a higher source current due to an extension of the phase current into the negative torque region, which lowers the net torque per ampere ratio. This study proposes a new DTC strategy for SRM to overcome this issue by modifying the partition of the sectors and appropriate voltage vector selection. Therefore, the proposed method improves the drive efficiency while minimising torque ripple. To implement this method, a non-linear machine model is developed using the torque and flux characteristics obtained from experimental studies on a four-phase 8/6 SRM. The proposed DTC scheme is implemented on a digital control platform and power loss calculations are performed to evaluate the drive efficiency. Test results show that the proposed DTC method has improved performance in terms of efficiency and torque ripple under various operating conditions in comparison to the conventional DTC strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.