Abstract

In the econometric literature it is known that, under certain conditions, estimating a system of equations together is more efficient than estimating each equation separately. This finding has been proved, however, only under the assumption of a known parametric form of heteroskedasticity (including homoskedasticity) or non-random regressors/instru-ments. This note shows that an analogous finding holds for GMM under heteroskedasticity of unknown form and random regressors/instruments. Specifically, I provide a necessary condition for the efficiency gain of the system GMM over the single-equation GMM. An analogous necessary condition for the efficiency gain is also shown to hold for minimum-distance (or X2) estimation (MDE).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.