Abstract

We study the efficiency fluctuations of a stochastic heat engine made of N interacting unicyclic machines and undergoing a phase transition in the macroscopic limit. Depending on N and on the observation time, the machine can explore its whole phase space or not. This affects the engine efficiency that either strongly fluctuates on a large interval of equiprobable efficiencies (ergodic case) or fluctuates close to several most likely values (nonergodic case). We also provide a proof that despite the phase transition, the decay rate of the efficiency distribution at the reversible efficiency remains largest one although other efficiencies can now decay equally fast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.