Abstract

In the present research, the seeds of Falcaria vulgaris were extracted from the investigated environment and used for crop cultivation. This study has focused on the efficiency evaluation of Falcaria vulgaris biomass (FVB) in cobalt ions removal from aqueous solutions. The biosorbent was characterized using FTIR, BET, EDAX-EDS, and SEM. The optimal conditions were determined by the response surface methodology (RSM) based on a Box-Behnken design (BBD) model. The BBD model had R 2 , R adj 2 and R pred 2 values of 0.9919, 0.9774, and 0.8929, respectively. The cobalt removal under different conditions of the BBD model varied from 36.14% to 82.11%. Based on the numerical optimization of the quadratic model, the maximum cobalt removal at a biosorbent-to-metal ratio of 10:1, pH = 4.88 and contact time of 70 min was calculated at 80.941%. The high accuracy of the model in predicting the optimal conditions for cobalt adsorption by FVB was confirmed using statistical analysis and validation tests. The adsorption process of FVB also follows a pseudo-second-order kinetic model, which suggests that the rate-controlling step in cobalt removal is the chemical interaction between functional groups in FVB and Co+2 ions. This study shows that FVB, a low-cost biosorbent, can be a suitable candidate for removing heavy metals such as cobalt from aqueous solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call