Abstract
Three processes for the production of 1,3-butadiene (1,3-BD) from lignin via syngas were proposed, and their 1,3-BD yields and input energy, such as electric power and heat loads, were estimated through process simulation. These processes consisted of lignin gasification, conversion of syngas to light olefins (LOs) via (1) dimethyl ether (DME), (2) methanol, or (3) direct synthesis, and isomerization/dehydrogenation of n-C4H8. The process capacity was 200 t/d on a wet lignin basis. The electric power was largely dependent on the process (4777–6073 kWe), while the minimum external heat was 97 kW, according to pinch analysis. When each reaction proceeded ideally, the process featuring the conversion of syngas to LOs via DME was the most promising. The high electric power (6008 kWe) for the process was attributed to excess N2 production through a cryogenic air separation method. A decrease in the amount of N2 supplied to the DME-to-LOs unit led to a decrease in the electric power to 5381 kWe, and the 1,3-BD ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.