Abstract

Improving power conversion efficiency of photovoltaic devices has been widely investigated; however, most research studies mainly focus on the modification of the absorber layer. Here, we present an approach to enhance the efficiency of Cu(In,Ga)(S,Se)2 (CIGSSe) thin-film solar cells simply by tuning the CdS buffer layer. The CdS buffer layer was deposited by chemical bath deposition. Indium doping was done during the growth process by adding InCl3 into the growing aqueous solution. We show that the solar cell efficiency is increased by proper indium doping. Based on the characteristics of the single CdS (with or without In-doping) layer and of the CIGSSe/CdS interface, we conclude that the efficiency enhancement is attributed to the interface-defect passivation of heterojunction, which significantly improves both open circuit voltage and fill factor. The results were supported by SCAPS simulations, which suggest that our approach can also be applied to other buffer systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.