Abstract

The reflectances of a thin-film solar cell were computed, using the rigorous coupled-wave approach, as functions of the angle of incidence and the free-space wavelength for illumination by linearly polarized plane waves. The metallic back-reflector was taken to be periodically corrugated and the solar cell was considered to be a tandem solar cell made of amorphous-silicon alloys. Low-reflectance bands in the reflectance spectrums were correlated with the solutions of the underlying canonical boundary-value problem to delineate the excitation of surface plasmon-polariton (SPP) waves. The total reflectance was lowered in the near-infrared spectral regime when multiple SPP waves of both linear polarization states were excited, thereby enhancing the absorption of light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.