Abstract

Efficient liquefaction of hydrogen is a crucial part for the large-scale storage and long-distance transportation of hydrogen. Helium Brayton cycle based on high-speed turbo-expanders has been widely employed in small and medium hydrogen liquefiers. In present study, a coupled model is proposed to predict the performance and cooling-down process of helium turbo-expanders with brake blower, and validation experiments were performed on a helium turbo-expander of a 2 t/d hydrogen liquefier. Experimental results indicated that the characteristic ratio of expander varied significantly during the cooling-down process which led to a large deviation from the optimal efficiency. The impact of brake pressure on the characteristic ratio and efficiency of the helium turbo-expander is studied, and a variable pressure control method is proposed for the efficient operation of turbo-expanders during the cooling-down process of a hydrogen liquefier. Compared with the constant brake pressure control method, the variable pressure control method can increase the expander efficiency by 5%–10% during the cooling-down process in the high temperature zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call