Abstract

Two novel dual motor input powertrains are proposed to improve the energy efficiency of electric vehicles (EVs). The first powertrain is based on a dual motor with planetary gear transmission (DMPGT), which connects two motors to the sun gear and ring gear respectively, and the carrier is engaged with output shaft. Two band brakes equipped on the sun gear and ring gear can realize three driving modes. The second powertrain is based on a dual motor with parallel axle transmission (DMPAT). It also provides three driving modes through switching on and off the two motors. To evaluate the two proposed powertrains, they will be compared with the widely adopted single motor with 1-speed and with 2-speed powertrains. The gear ratios of the powertrains are selected aiming at the vehicle dynamic performance, while the gear or mode shifting is designed to maximize the efficiency of EVs through an instantaneous optimization algorithm. The simulation results of the two proposed powertrains in three typical driving cycles demonstrate that the EVs equipped with both DMPGT and DMPAT have a higher overall efficiency than the EVs equipped with single motor input powertrain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call