Abstract
Four zero valent iron-based composites were prepared and applied as the reactive media of permeable reactive barriers. Batch tests and continuous-flow column experiments were conducted to assess the long-term performance of these composites for possible utilization as fillers for PRB. The experimental results of the batch tests revealed that in single-metal systems, the removal efficiency of Cu(Ⅱ), Co(Ⅱ), Cr(Ⅵ) and As(Ⅲ) could reach 98% at equilibrium. Equilibrium data showed that composites displayed different selectivity values in binary and quaternary-component systems. For the continuous tests, column filled with chitosan-zero valent iron-based composites, exhibited optimal removal efficiency and achieved average removal values of 98.84%, 88.28%, 95.65% and 87.10% for Cu(Ⅱ), Co(Ⅱ), Cr(Ⅵ) and As(Ⅲ) during the whole 30-day operation, respectively. Dynamic removal improvement of multiple metals was observed with further assembly media, with average removal of 99.11%, 90.05% and 87.34% for Cu(Ⅱ), Co(Ⅱ) and As(Ⅲ), respectively. Combined with superficial characteristic analysis, the functional groups distributed on the surface of composites played a key role in metal sorption. Moreover, the adsorbed Cu(Ⅱ), Co(Ⅱ) and Cr(Ⅵ) gradually transferred to the mobile phase when the operational periods were prolonged, while As(Ⅲ) became more stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.