Abstract

<p>The public and scientific discourse on how to mitigate the COVID-19 pandemic is often focused on the impact of individual protective measures, in particular on vaccination. In view of changing virus variants and conditions, however, it seems not clear if vaccination or any other protective measure alone may suffice to contain the transmission of SARS-CoV-2. Accounting for both droplet and aerosol transmission, we investigated the effectiveness and synergies of vaccination and non-pharmaceutical interventions like masking, distancing & ventilation, testing & isolation, and contact reduction as a function of compliance in the population. For realistic conditions, we find that it would be difficult to contain highly contagious SARS-CoV-2 variants by any individual measure. Instead, we show how multiple synergetic measures have to be combined to reduce the effective reproduction number (Re) below unity for different basic reproduction numbers ranging from the SARS-CoV-2 ancestral strain up to measles-like values (R0 = 3 to 18).</p><p>Face masks are well-established and effective preventive measures against the transmission of respiratory viruses and diseases, but their effectiveness for mitigating SARS-CoV-2 transmission is still under debate. We show that variations in mask efficacy can be explained by different regimes of virus abundance (virus-limited vs. virus-rich) and are related to population-average infection probability and reproduction number. Under virus-limited conditions, both surgical and FFP2/N95 masks are effective at reducing the virus spread, and universal masking with correctly applied FFP2/N95 masks can reduce infection probabilities by factors up to 100 or more (source control and wearer protection).</p><p>Masks are particularly effective in combination with synergetic measures like ventilation and distancing, which can reduce the viral load in breathing air by factors up to 10 or more and help maintaining virus-limited conditions. Extensive experimental studies, measurement data, numerical calculations, and practical experience show that window ventilation supported by exhaust fans (i.e. mechanical extract ventilation) is a simple and highly effective measure to increase air quality in classrooms. This approach can be used against the aerosol transmission of SARS-CoV-2. Mechanical extract ventilation (MEV) is very well suited not only for combating the COVID19 pandemic but also for sustainably ventilating schools in an energy-saving, resource-efficient, and climate-friendly manner.  Distributed extract ducts or hoods can be flexibly reused, removed and stored, or combined with other devices (e.g. CO2 sensors), which is easy due to the modular approach and low-cost materials (www.ventilationmainz.de).</p><p>The scientific findings and approaches outlined above can be used to design, communicate, and implement efficient strategies for mitigating the COVID-19 pandemic.</p><p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.