Abstract
Studies on the epidemiology of dry-surface biofilms (DSBs) within healthcare settings have shown an almost universal distribution across frequently touched items. Despite a growing body of evidence for DSBs in hospitals, little attention has been paid to the recovery capacity of techniques used to detect these microbial communities. Biofilms are inherently difficult to remove from surfaces due to adhesive substances within their matrix and may act as sources of infection, but to what extent is largely unknown. In this study, we evaluate the recovery efficiencies of commonly used environmental swabs against DSBs containing 7.24 log10 Acinetobacter baumannii cm-2, using a drip flow reactor and desiccation cycle. Biofilm presence was visually confirmed using episcopic differential interference contrast microscopy combined with epifluorescence and quantified using sonicated viable plate counts. The swab materials used comprised foam, viscose and cotton, all of which were pre-moistened using a buffer solution. The surfaces were vigorously swabbed by each material type and the resultant microbe populations for both swabs and remaining DSBs were quantified. Our results found foam-tipped swabs to be superior, detecting on average 30 % of the original DSB contamination; followed by viscose (6 %) and cotton (3 %). However, no distinct difference was revealed in the concentration of microbes remaining on the surface after swabbing for each swab type, suggesting there is variation in the capacity for each swab to release biofilm-associated micro-organisms. We conclude whilst environmental swabs do possess the ability to detect biofilms on dry surfaces, the reduced efficiencies are likely to cause an underestimation of the microbes present and should be considered during clinical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.