Abstract

BackgroundHemorrhagic events are frequent in patients on treatment with antivitamin-K oral anticoagulants due to their narrow therapeutic margin. Studies performed with acenocoumarol have shown the relationship between demographic, clinical and genotypic variants and the response to these drugs. Once the influence of these genetic and clinical factors on the dose of acenocoumarol needed to maintain a stable international normalized ratio (INR) has been demonstrated, new strategies need to be developed to predict the appropriate doses of this drug. Several pharmacogenetic algorithms have been developed for warfarin, but only three have been developed for acenocoumarol. After the development of a pharmacogenetic algorithm, the obvious next step is to demonstrate its effectiveness and utility by means of a randomized controlled trial. The aim of this study is to evaluate the effectiveness and efficiency of an acenocoumarol dosing algorithm developed by our group which includes demographic, clinical and pharmacogenetic variables (VKORC1, CYP2C9, CYP4F2 and ApoE) in patients with venous thromboembolism (VTE).Methods and designThis is a multicenter, single blind, randomized controlled clinical trial. The protocol has been approved by La Paz University Hospital Research Ethics Committee and by the Spanish Drug Agency. Two hundred and forty patients with VTE in which oral anticoagulant therapy is indicated will be included. Randomization (case/control 1:1) will be stratified by center. Acenocoumarol dose in the control group will be scheduled and adjusted following common clinical practice; in the experimental arm dosing will be following an individualized algorithm developed and validated by our group. Patients will be followed for three months. The main endpoints are: 1) Percentage of patients with INR within the therapeutic range on day seven after initiation of oral anticoagulant therapy; 2) Time from the start of oral anticoagulant treatment to achievement of a stable INR within the therapeutic range; 3) Number of INR determinations within the therapeutic range in the first six weeks of treatment.DiscussionTo date, there are no clinical trials comparing pharmacogenetic acenocoumarol dosing algorithm versus routine clinical practice in VTE. Implementation of this pharmacogenetic algorithm in the clinical practice routine could reduce side effects and improve patient safety.Trial registrationEudra CT. Identifier: 2009-016643-18.

Highlights

  • Hemorrhagic events are frequent in patients on treatment with antivitamin-K oral anticoagulants due to their narrow therapeutic margin

  • Studies performed with warfarin and acenocoumarol have shown that the relationship between the genotypic variants Cytochrome P450 2C9 (CYP2C9) and VKORC1 account for approximately 30% to 40% of the variability in the response to these drugs [4,5,6] while various clinical factors explain between 15% and 20% of the variability

  • Design and setting The clinical trial was designed as a pragmatic, randomized, parallel two-arm, single blind trial to compare the individualized adjustment of acenocoumarol dosage using a pharmacogenetic algorithm versus the standard adjustment, in patients initiating oral anticoagulation for the treatment of venous thromboembolism

Read more

Summary

Introduction

Hemorrhagic events are frequent in patients on treatment with antivitamin-K oral anticoagulants due to their narrow therapeutic margin. Studies performed with acenocoumarol have shown the relationship between demographic, clinical and genotypic variants and the response to these drugs. The aim of this study is to evaluate the effectiveness and efficiency of an acenocoumarol dosing algorithm developed by our group which includes demographic, clinical and pharmacogenetic variables (VKORC1, CYP2C9, CYP4F2 and ApoE) in patients with venous thromboembolism (VTE). Studies performed with warfarin and acenocoumarol have shown that the relationship between the genotypic variants CYP2C9 and VKORC1 account for approximately 30% to 40% of the variability in the response to these drugs [4,5,6] while various clinical factors explain between 15% and 20% of the variability. Apolipoprotein E (ApoE), in turn, mediates the uptake of lipoproteins rich in vitamin K by the liver and other tissues [11,12]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call