Abstract
Pharmaceuticals are emerging contaminants of global concern due to potential ecotoxicity and persistence in wastewater. Since conventional wastewater treatment plants are not designed to remove micropollutants and the removal efficiency varies compound-specifically, pharmaceuticals pose a risk in the recipient aquatic environments. Adsorption by solid materials such as activated biochar has been suggested to offer a practical removal method. However, not much is known about the environmental risks of the adsorbents used in wastewater treatment. This study aimed to study the efficiency of activated biochar (ACB) to remove low and high concentration of specific pharmaceuticals including diclofenac (DI), tetracycline (TE), and cephalexin (CEP) from Milli-Q water (MQ) and artificial wastewater (AWW). Furthermore, the study evaluated the ecotoxicity of these pharmaceuticals, as well as pristine ACB and ACB loaded with pharmaceuticals (ACB-LP), in both MQ and AWW using Daphnia magna. The adsorbate concentration and matrix affected ACB’s removal efficiency. Weaker adsorbent-adsorbate interactions and mass transfer resistance at lower adsorbate concentrations, along with interactions between wastewater constituents and pharmaceuticals were the leading factors contributing to this reduction. These experimental observations indicate practical considerations for using adsorbents in operational wastewater settings. Furthermore, ACB-LPs generally exhibited lower toxicity compared to ACB, attributed to the saturation of free binding sites and reduced adhesion to daphnids. This study highlights the importance of examining the environmental risks of adsorbent materials used in wastewater treatment, particularly given their anticipated future use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.