Abstract

Poly(acryldinitrophenylamidrazone-dinitroacrylphenylhydrazine) chelating fiber was synthesized from polyacrylonitrile fiber and used for enrichment and separation for traces of Au(III), Ru(III), In(III), Bi(III), Zr(IV), V(V), Ga(III) and Ti(IV) ions from solution samples. The acidity, rate, re-use, capacity and interference on the adsorption of ions on the chelating fiber as well as the conditions of desorption of these ions from the chelating fiber were investigated by means of inductively coupled plasma optical emission spectrometry. The results show that 10–100 ng ml −1 of Au(III), Ru(III), In(III), Bi(III), Zr(IV), V(V), Ga(III) and Ti(IV) ions can be quantitatively enriched by the chelating fiber at a 2 ml min −1 of flow rate in the range pH 4–5, and desorbed quantitatively with 20 ml of 5 M HCl for In(III), Bi(III), Zr(IV), V(V), Ga(III), Ti(IV) and 20 ml of 4 M HCl+2% CS(NH 2) 2 solution for Au(III), Ru(III) (with recovery>95%). 50- to 500- fold excesses of Fe(III), Al(III), Mg(II), Mn(II), Ca(II), Cu(II), Ni(II) ions cause little interference in the concentration and determination of analyzed ions. When the fiber was reused for 8 times, the recoveries of the above ions enriched by the fiber were still over 87%. The relative standard deviations (RSDs) for the enrichment and determination of 10 ng ml −1 Au, Ru, In, Bi, Ga and 1 ng ml −1 Zr, V, Ti were lower than 3.0%. The results obtained for these ions in real solution samples by this method were basically in agreement with the given values with average errors of less than 6.3%. FT-IR spectra show that existence of NNCNHNH, OCNHNH and NO 2 functional groups are verified in chelating fiber, and Au(III) or Ru(III) is mainly combined with nitrogen (or oxygen) of the groups to form a chelate complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.