Abstract

Abstract Reinforced concrete is one of the most predominant materials used in constructed structures and infrastructures throughout the world. For this reason, the maintenance management of these structures is a frequent subject of study in material science and civil engineering. Thereby, several studies conclude that corrosion of reinforcement in concrete structures may become an expensive degradation mechanism whether a suitable intervention strategy throughout its service life is not applied. In this context, maintenance management is crucial to slow down the degradation process and to extend the lifespan, which can comprise two stages: inspection planning, and an assessment of repair probabilities according to the inspection results. The paper herein presented focuses on a decision-making model for the optimal inspection planning for concrete structures subject to carbonation-induced corrosion. A structured approach to optimise inspection times considering the uncertainty inherent in the corrosion-induced degradation and a trade-off between inspection costs and the structure serviceability is performed. The main objective of this work is to elaborate an efficiency analysis for a set of optimal inspection strategies that is conducted through two approaches: the Stochastic Frontier Analysis (SFA) and the Multi-direction Enveloping Analysis (MEA). This analysis provides an appraisal that reduces the number of inspection techniques necessary and the time gap between inspections to provide not only an optimal solution but the most efficient as well. Therefore, the outcome of this paper provides an inspection strategy that establishes the optimal solution for both the inspection times and the most suitable inspection technique to be applied considering the efficiency of the solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.