Abstract

With the progress of deep submicron technology, power consumption and temperature-related issues have become dominant factors for chip design. Therefore, very large-scale integrated systems like Systems-on-Chip (SoCs) are exposed to an increasing thermal stress. On the one hand, this necessitates effective mechanisms for thermal management and task mapping. On the other hand, application of according thermal-aware approaches is accompanied by disturbance of system integrity and degradation of system performance. In this chapter, a method to predict and proactively manage the on-chip temperature distribution of systems based on Networks-on-Chip (NoCs) is proposed. Thereby, traditional reactive approaches for thermal management and task mapping can be replaced. This results in shorter response times for the application of management measures and therefore in a reduction of temperature and thermal imbalances and causes less impairment of system performance. The systematic analysis of simulations conducted for NoC sizes up to 4x4 proves that under certain conditions the proactive approach is able to mitigate the negative impact of thermal management on system performance while still improving the on-chip temperature profile. Similar effects can be observed for proactive thermal-aware task mapping at system runtime allowing for the consideration of prospective thermal conditions during the mapping process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.