Abstract

This is an animal experiment using transcranial motor evoked potentials (TcMEPs), mechanically elicited electromyographic (EMG) responses, and evoked EMG responses during nerve root compression in a pig model. To compare these 3 electrophysiological measures for compression applied to a lumbar nerve root. Lumbar nerve root injury may result in motor weakness in up to 30% of spinal deformity cases. Compressive injury may occur during the surgical approach, decompression, and manipulation of the spine. Using an established porcine model, we examined the changes to TcMEPs, mechanically elicited EMG responses, and evoked EMG responses during varied compressive forces. TcMEPs, mechanically elicited EMG responses, and evoked EMG responses were recorded for the tibialis anterior muscle in 16 experiments. Precompression TcMEP and nerve root stimulation threshold (NRT) were obtained. The dominant root was compressed at 1 N (n = 8) or 2 N (n = 8) for 10 minutes. TcMEP was recorded every minute during compression, and TcMEP and NRT were recorded after both compression and 10 minutes of recovery. After 10 minutes of 1-N compression, TcMEP amplitude of the tibialis anterior muscle decreased to 69% ± 13% of baseline (P < 0.02 vs. baseline). The mean NRT increased to 645% ± 433% (P < 0.02 vs. baseline NRT). After the recovery period, TcMEP in the 1-N group returned to 98% ± 11% of baseline (P = 0.36 vs. baseline). After 10 minutes of 2-N compression, TcMEPs from the tibialis anterior muscle decreased to 27% ± 15% of baseline (P < 0.02 vs. baseline). After the recovery period, TcMEP in the 2-N group returned to 30% ± 10% of baseline (P < 0.02 vs. baseline). Tonic EMG activity was observed in 3 nerve roots compressed at 2 N. Compression at 1 and 2 N produced consistent changes in TcMEPs and EMG responses. TcMEP monitoring is sensitive to an increase in compressive force. TcMEP amplitude change was correlated to the force applied and the ability of the nerve root to recover. Mechanically elicited EMG responses were not sensitive to nerve root compression. N/A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call