Abstract
The efficacy of three antimicrobials was evaluated against two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surrogates – bovine coronavirus (BCoV) and human coronavirus (HCoV) OC43 – on hard and soft nonporous materials. Three antimicrobials with three different active ingredients (chlorine, hydrogen peroxide, and quaternary ammonium compound + alcohol) were studied. Initially, a neutralization method was optimized for each antimicrobial. Then, we determined their efficacy against BCoV and HCoV OC43 in both suspension and on surfaces made with polyethylene terephthalate (PET) plastic and vinyl upholstery fabric. All tests were conducted under ambient environmental conditions with a soil load of 5% fetal bovine serum. After a 2-min exposure, all three antimicrobials achieved a >3.0 log10 reduction in viral titers in suspension. All three also reduced virus infectivity on both surface materials below the detection limit (0.6 log10 TCID50/carrier). Treatments in which the reduction in virus titer was <3.0 log10 were attributed to a decreased dynamic range on the carrier during drying prior to disinfection. The carrier data revealed that both surrogates were inactivated more rapidly (p <0.05) on vinyl or under conditions of high relative humidity. Three classes of antimicrobials were efficacious against both SARS-CoV-2 surrogate viruses, with BCoV demonstrating slightly less sensitivity compared to HCoV OC43. These findings also illustrate the importance of (1) optimizing the neutralization method and (2) considering relative humidity as a key factor for efficacy testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.