Abstract

To investigate the effectiveness of targeted ECO/miR-200c in modulating tumor microenvironment and treating triple negative breast cancer (TNBC) using non-invasive magnetic resonance molecular imaging (MRMI) of extradomain B fibronectin (EDB-FN) with a targeted MRI contrast agent. MDA-MB-231 and Hs578T TNBC cells were transfected with RGD-PEG-ECO/miR-200c. Invasive and migratory potential was evaluated using transwell, scratch wound, and spheroid formation assays. Athymic nude mice bearing orthotopic MDA-MB-231 and Hs578T xenografts were treated with weekly i.v. injection of RGD-PEG-ECO/miR-200c nanoparticles at 1.0 mg/kg/week RNA for 6weeks. MRMI of EDB-FN was performed using a targeted contrast agent MT218 [ZD2-N3-Gd(DO3A)] on a 3T MRS 3000 scanner. T1-weighted images were acquired following intravenous injection of MT218 at dose of 0.1mmol/kg using a fast spin echo axial sequence with respiratory gating. Systemic administration of RGD-PEG-ECO/miR-200c nanoparticles in mice bearing orthotopic TNBC xenografts significantly suppressed tumor progression without toxic side-effects. MRMI with MT218 revealed that the treatment significantly suppressed tumor proliferation as compared to the control. MRMI also showed that the miR-200c treatment altered tumor microenvironment by reducing EDB-FN expression, as evidenced by decreased contrast enhancement in both MDA-MB-231 and Hs578T tumors. The reduction of EDB-FN was confirmed by immunohistochemistry. Targeted delivery of miR-200c with RGD-PEG-ECO/miR-200c nanoparticles effectively modulates tumor microenvironment and suppresses TNBC proliferation in animal models. MRMI of tumor EDB-FN expression is effective to non-invasively monitor tumor response and therapeutic efficacy of RGD-PEG-ECO/miR-200c nanoparticles in TNBC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call