Abstract

The role of pharmacogenomics and tamoxifen was investigated by analyzing several polymorphisms of cytochrome P450 and SULT1A1 gene in a nested case control study from the Italian Tamoxifen Prevention Trial. This study included 182 Caucasian subjects, 47 breast cancer (BC) cases and 135 matched controls. We used the AmpliChip CYP450 Test to screen 33 alleles of CYP2D6 and 3 of CYP2C19. One more variant for CYP2C19*17 and two single-nucleotide polymorphisms for the gene SULT1A1 were also performed. By using the AmpliChip CYP450 Test, out of 182 subjects, we identified 8 poor metabolizer (PM), 17 intermediate metabolizer (IM), 151 extensive metabolizer (EM) and 3 ultrarapid metabolizer (UM). PM women allocated to the tamoxifen arm showed a higher risk of developing BC compared to the remaining phenotypes (P=0.035). In an exploratory analysis, among 58 women with a CYP2D6*2A allele, 9 BCs were diagnosed in the placebo arm and only 1 in the tamoxifen arm (P=0.0001). CYP2C19 and SULT1A1 polymorphisms did not show any correlation with tamoxifen efficacy. Tamoxifen showed reduced efficacy in CYP2D6 PMs in the chemoprevention setting. Conversely, the CYP2D6*2A allele may be associated with increased efficacy of tamoxifen. These findings support the relevance of pharmaco-genomics in tailoring tamoxifen treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.