Abstract

The present study was conducted to investigate the efficacy of sweet potato powder (SPP) and water as a fat replacer in low-fat pork patties. Low-fat pork patties were developed by replacing the added fat with combinations of SPP and chilled water. Three different levels of SPP/chilled water viz. 0.5/9.5% (T-1), 1.0/9.0% (T-2), and 1.5/8.5% (T-3) were compared with a control containing 10% animal fat. The quality of low-fat pork patties was evaluated for physico-chemical (pH, emulsion stability, cooking yield, aw), proximate, instrumental colour and textural profile, and sensory attributes. The cooking yield and emulsion stability improved (p<0.05) in all treatments over the control and were highest in T-2. Instrumental texture profile attributes and hardness decreased, whereas cohesiveness increased compared with control, irrespective of SPP level. Dimensional parameters (% gain in height and % decrease in diameter) were better maintained during cooking in the low-fat product than control. The sensory quality attributes juiciness, texture and overall acceptability of T-2 and T-3 were (p<0.05) higher than control. Results concluded that low-fat pork patties with acceptable sensory attributes, improved cooking yield and textural attributes can be successfully developed with the incorporation of a combination of 1.0% SPP and 9.0% chilled water.

Highlights

  • Meat and meat products are generally recognized as a source of high biological value proteins, fat-soluble vitamins, minerals, trace elements and bioactive compounds (Mehta et al, 2013)

  • In view of above discussion, the present study was conducted with an objective to optimize the level of incorporation of sweet potato powder (SPP) as fat replacer along with added chilled water in low-fat pork patties on the basis of physicochemical, processing and sensory quality attributes

  • It is attributed to innate pH (6.56) of the SPP and water incorporated in meat emulsion

Read more

Summary

INTRODUCTION

Meat and meat products are generally recognized as a source of high biological value proteins, fat-soluble vitamins, minerals, trace elements and bioactive compounds (Mehta et al, 2013). Various fat mimics and fat replacers are commonly being employed during processing such as added water (Kumar and Sharma, 2004), carbohydrates and starches (Aktas and Genccelep, 2006), plant proteins (Kumar et al, 2007) and animal proteins (Serdaroglu, 2006) These resulted in improved physico-chemical and sensory properties like cooking yield, emulsion stability and overall. Proximate analysis Moisture (oven drying), protein (Kjeldahl distillation), fat (Soxhlet method) and ash (muffle furnace) content of both control and low-fat pork patties were determined by water, 20% carbohydrates, 3% fibre, 1.6%, protein, 14,187 IU vitamin A and 8,509 μg beta carotene (USDA, 2003) In addition it has inherent properties of water retention. In view of above discussion, the present study was conducted with an objective to optimize the level of incorporation of sweet potato powder (SPP) as fat replacer along with added chilled water in low-fat pork patties on the basis of physicochemical, processing and sensory quality attributes

MATERIALS AND METHODS
RESULTS AND DISCUSSION
CONCLUSIONS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call